首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35748篇
  免费   2974篇
  国内免费   925篇
  2023年   149篇
  2022年   187篇
  2021年   759篇
  2020年   595篇
  2019年   737篇
  2018年   1034篇
  2017年   807篇
  2016年   1278篇
  2015年   1991篇
  2014年   2252篇
  2013年   2443篇
  2012年   3166篇
  2011年   3030篇
  2010年   1918篇
  2009年   1629篇
  2008年   2318篇
  2007年   2028篇
  2006年   1796篇
  2005年   1674篇
  2004年   1601篇
  2003年   1303篇
  2002年   1252篇
  2001年   944篇
  2000年   907篇
  1999年   637篇
  1998年   282篇
  1997年   224篇
  1996年   178篇
  1995年   170篇
  1994年   153篇
  1993年   118篇
  1992年   236篇
  1991年   196篇
  1990年   165篇
  1989年   160篇
  1988年   121篇
  1987年   107篇
  1986年   106篇
  1985年   98篇
  1984年   79篇
  1983年   73篇
  1982年   51篇
  1981年   51篇
  1979年   48篇
  1978年   46篇
  1976年   45篇
  1975年   44篇
  1973年   52篇
  1971年   46篇
  1970年   40篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
1.
2.
The pygmy right whale, Caperea marginata , is the least understood extant baleen whale (Cetacea, Mysticeti). Knowledge on its basic anatomy, ecology, and fossil record is limited, even though its singular position outside both balaenids (right whales) and balaenopteroids (rorquals + grey whales) gives Caperea a pivotal role in mysticete evolution. Recent investigations of the cetacean cochlea have provided new insights into sensory capabilities and phylogeny. Here, we extend this advance to Caperea by describing, for the first time, the inner ear of this enigmatic species. The cochlea is large and appears to be sensitive to low‐frequency sounds, but its hearing limit is relatively high. The presence of a well‐developed tympanal recess links Caperea with cetotheriids and balaenopteroids, rather than balaenids, contrary to the traditional morphological view of a close Caperea‐balaenid relationship. Nevertheless, a broader sample of the cetotheriid Herpetocetus demonstrates that the presence of a tympanal recess can be variable at the specific and possibly even the intraspecific level.  相似文献   
3.
Proteins associated with the centrosome play key roles in mitotic progression in mammalian cells. The activity of Cdk1-opposing phosphatases at the centrosome must be inhibited during early mitosis to prevent premature dephosphorylation of Cdh1—an activator of the ubiquitin ligase anaphase-promoting complex/cyclosome—and the consequent premature degradation of mitotic activators. In this paper, we show that reversible oxidative inactivation of centrosome-bound protein phosphatases such as Cdc14B by H2O2 is likely responsible for this inhibition. The intracellular concentration of H2O2 increases as the cell cycle progresses. Whereas the centrosome is shielded from H2O2 through its association with the H2O2-eliminating enzyme peroxiredoxin I (PrxI) during interphase, the centrosome-associated PrxI is selectively inactivated through phosphorylation by Cdk1 during early mitosis, thereby exposing the centrosome to H2O2 and facilitating inactivation of centrosome-bound phosphatases. Dephosphorylation of PrxI by okadaic acid–sensitive phosphatases during late mitosis again shields the centrosome from H2O2 and thereby allows the reactivation of Cdk1-opposing phosphatases at the organelle.  相似文献   
4.
5.
6.
7.
Bacillus thuringiensis NTB-1 isolated from soil samples in Korea produces ovoidal parasporal inclusions with proteins of approximately 24–40 kDa in size. Although serological study indicated that the isolate has a flagella (H) antigen identical with subsp. israelensis , it seemed to be non-insecticidal against Lepidoptera and Coleoptera as well as Diptera. To investigate the activity of non-insecticidal B. thuringiensis transformed with insecticidal crystal protein genes, cryIVD and cytA genes of B. thuringiensis subsp. morrisoni PG-14, highly toxic to mosquito larvae, were introduced into the isolate NTB-1. The expression of mosquitocidal crystal protein genes in NTB-1 was characterized by SDS–PAGE analysis and electron microscopy. The results showed that crystalline inclusions of host, CryIVD and CytA were stably expressed in the transformant. However, the mosquitocidal activity of transformant was similar to that of B. thuringiensis subsp. kurstaki Cry B harbouring cryIVD and cytA genes, demonstrating that a synergistic effect by an interaction of both introduced insecticidal and resident non-insecticidal crystal proteins was not observed.  相似文献   
8.
Transient Receptor Potential, Melastatin-related, member 4 (TRPM4) channels are Ca2+-activated Ca2+-impermeable cation channels. These channels are expressed in various types of mammalian tissues including the brain and are implicated in many diverse physiological and pathophysiological conditions. In the past several years, the trafficking processes and regulatory mechanism of these channels and their interacting proteins have been uncovered. Here in this minireview, we summarize the current understanding of the trafficking mechanism of TRPM4 channels on the plasma membrane as well as heteromeric complex formation via protein interactions. We also describe physiological implications of protein-TRPM4 interactions and suggest TRPM4 channels as therapeutic targets in many related diseases. [BMB Reports 2015; 48(1): 1-5]  相似文献   
9.
Aeromonas bacteria (110 strains) from a variety of clinical, food and environmental sources, were identified using routine biochemical tests. Concurrently they were tested aerobically and anaerobically for their ability to perform synergistic haemolysis with Staphylococcus aureus (the 'CAMP' reaction). Results did not support a reported observation that the 'CAMP' reaction can he used to facilitate speciation of Aeromonas bacteria.  相似文献   
10.
Developmental axon branching dramatically increases synaptic capacity and neuronal surface area. Netrin-1 promotes branching and synaptogenesis, but the mechanism by which Netrin-1 stimulates plasma membrane expansion is unknown. We demonstrate that SNARE-mediated exocytosis is a prerequisite for axon branching and identify the E3 ubiquitin ligase TRIM9 as a critical catalytic link between Netrin-1 and exocytic SNARE machinery in murine cortical neurons. TRIM9 ligase activity promotes SNARE-mediated vesicle fusion and axon branching in a Netrin-dependent manner. We identified a direct interaction between TRIM9 and the Netrin-1 receptor DCC as well as a Netrin-1–sensitive interaction between TRIM9 and the SNARE component SNAP25. The interaction with SNAP25 negatively regulates SNARE-mediated exocytosis and axon branching in the absence of Netrin-1. Deletion of TRIM9 elevated exocytosis in vitro and increased axon branching in vitro and in vivo. Our data provide a novel model for the spatial regulation of axon branching by Netrin-1, in which localized plasma membrane expansion occurs via TRIM9-dependent regulation of SNARE-mediated vesicle fusion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号